169 research outputs found

    Energy saving for air supply in a real WWTP: application of a fuzzy logic controller.

    Get PDF
    Abstract An unconventional cascade control system, for the regulation of air supply in activated sludge wastewater treatment plants (WWTPs), was tested. The dissolved oxygen (DO) set point in the aeration tank was dynamically calculated based on effluent ammonia concentration, following a fuzzy logic based approach. First, simulations were conducted, according to the BSM2 protocol, for a general comparison with more conventional control strategies. It turned out that the effluent quality could be improved by 7–8%, based on the EQI parameter. Moreover, the aeration energy requirement could be reduced up to 13%. Subsequently, the system was installed in a full-scale WWTP. While stably complying with the ammonia effluent standard (10 mg/L), excess air supply was prevented, and a reduction of the specific power consumption (kWh/kgCODremoved) of 40–50% was recorded with respect to the previously installed PID controller (fixed DO set point)

    Reducing energy demand by the combined application of advanced control strategies in a full scale WWTP

    Get PDF
    Abstract Two advanced control strategies were applied in the secondary and tertiary stages, respectively, of a full scale wastewater treatment plant (WWTP). This has a nominal capacity of 330,000 population equivalent (PE), a complex configuration (having been upgraded several times through the years), and it faces significant seasonal load fluctuations (being located in a touristic area, in Northern Italy). The lifting station of the tertiary treatments (devoted to phosphorus precipitation and UV disinfection) was optimized by adjusting the pumped flowrate, depending on influent phosphorus concentration. A preliminary simulation showed that a 15% reduction of pumping energy could be achieved. This result was confirmed by field measurements. Moreover, a fuzzy control system was designed and applied to one of the six parallel nitrification reactors, yielding a reduction of more than 25% of the power requirement for aeration. Overall, the combined application of the two controllers led to a 7% reduction of the total energy consumption of the plant. This result is particularly promising given that the fuzzy controller was applied only to one of six biological reactors

    Assessment of the Impact of a New Industrial Discharge on an Urban Wastewater Treatment Plant: Proposal for an Experimental Protocol

    Get PDF
    Assessing the compatibility of industrial discharges with the biological process of a municipal wastewater treatment plant (WWTP) may represent a critical task. Indeed, either focusing only on chemical characterization or ecotoxicity tests designed to assess the impact on surface waters may lead to questionable or misleading conclusions. The feasibility of an industrial connection to the sewer should better take into account the features of the downstream WWTP, in particular by studying the potential effects on the biomass of that specific plant. With this aim, a multi-step experimental protocol applicable by water utilities has been proposed: (step 1) calculation of the flow rate/load ratio between industrial discharge (ID) and urban wastewater (WW); (step 2) analysis of the modified operating conditions of the biological stage; (step 3) experimental assessment of the impact of the ID on the WWTP biomass by means of respirometric tests. An application of this protocol is presented in this work as a case study, namely a new ID (average flowrate 200 m3 d−1) coming from an aqueous waste treatment plant (AWTP) to be connected to the public sewer. The integrated evaluation of results showed that no negative impacts could be expected on the downstream urban activated sludge WWTP (treating a flow rate of around 45,000 m3 d−1)

    Opinion paper about organic trace pollutants in wastewater: Toxicity assessment in a European perspective

    Get PDF
    This opinion paper focuses on the role of eco-toxicological tools in the assessment of possible impacts of emerging contaminants on the aquatic ecosystem, hence, on human health. Indeed, organic trace pollutants present in raw and treated wastewater are the pivot targets: a multidisciplinary approach allows defining the basic principles for managing this issue, from setting a proper monitoring campaign up to evaluating the optimal process treatment. Giving hints on trace pollutants fate and behaviour, attention is focused on the choice of the bioassay(s), by analysing the meaning of possible biological answers. Data interpretation and exploitation are detailed with the final goal of providing criteria in order to be able to select the best targeted treatment options. The manuscript dealswith conventional and innovative analytical approaches for assessing toxicity, by reviewing laboratory and field assays; illustrative real scale and laboratory applications integrate and exemplify the proposed approach. (C) 2018 Elsevier B.V. All rights reserved.COST-European Cooperation in Science and TechnologyEuropean Cooperation in Science and Technology (COST) [ES1202]; Ministry of Education, Science and Technological Development of the Republic of Serbia [172050]The authors would like to acknowledge the financial support provided by COST-European Cooperation in Science and Technology, to the COST Action ES1202 Conceiving Wastewater Treatment in 2020-Energetic, Environmental and Economic Challenges (Water_2020). Biljana Skrbic would like to thanks the Ministry of Education, Science and Technological Development of the Republic of Serbia for financial support through project no. 172050

    Removal of Per- and Polyfluoroalkyl Substances by Adsorption on Innovative Adsorbent Materials

    Get PDF
    Per- and polyfluoroalkyl substances (PFAS) constitute a group of organofluorine chemical synthetic compounds widely used in industries and manufacturing due to their hydrophobic properties. However, PFAS have been found to cause negative human health outcomes. Therefore, a strong interest in the possible removal of these compounds from wastewater (WW) has been shown. This work aims to present a systematic analysis of the scientific literature related to the innovative and alternative adsorbent materials that can be used for treating PFAS-contaminated WW. Moreover, the adsorption processes are considered, focusing the attention on virgin adsorbent materials and biochar as adsorbents. Virgin adsorbent materials comprise conventional adsorbent materials, functional clays, metal-organic frameworks, and functionalized organic polymers. Biochar includes materials obtained from agricultural or food residues and from sewage sludge. The review shows that conventional treatment units using virgin adsorbent materials are characterized by high adsorption capacity, but also high costs. In addition, the refunctionalization of adsorbent materials is difficult to obtain. On the contrary, biochar, which is a residual product of other production processes, appears to be a cost-effective solution

    Integrated membrane bioreactors modelling: A review on new comprehensive modelling framework

    Get PDF
    Integrated Membrane Bioreactor (MBR) models, combination of biological and physical models, have been representing powerful tools for the accomplishment of high environmental sustainability. This paper, produced by the International Water Association (IWA) Task Group on Membrane Modelling and Control, reviews the state-of-the-art, identifying gaps for future researches, and proposes a new integrated MBR modelling framework. In particular, the framework aims to guide researchers and managers in pursuing good performances of MBRs in terms of effluent quality, operating costs (such as membrane fouling, energy consumption due to aeration) and mitigation of greenhouse gas emissions

    Opinion paper about organic trace pollutants in wastewater: Toxicity assessment in a European perspective

    Get PDF
    This opinion paper focuses on the role of eco- toxicological tools in the assessment of possible impacts of emerging contaminants on the aquatic ecosystem, hence, on human health. Indeed, organic trace pollutants present in raw and treated wastewater are the pivot targets: a multidisciplinary approach allows defining the basic principles for managing this issue, from setting a proper monitoring campaign up to evaluating the optimal process treatment. Giving hints on trace pollutants fate and behavior, attention is focused on the choice of the bioassay( s), by analyzing the meaning of possible biological answers. Data interpretation and exploitation are detailed with the final goal of providing criteria in order to be able to select the best-targeted treatment options. The manuscript deals with conventional and innovative analytical approaches for assessing toxicity, by reviewing laboratory and field assays ; illustrative real scale and laboratory applications integrate and exemplify the proposed approach

    The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance

    Get PDF
    The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide, raising serious concerns. A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between 11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing. Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7 December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive wastewater samples rising from 1.0% (1/104 samples) in the week 5–11 December, to 17.5% (25/143 samples) in the week 12–18, to 65.9% (89/135 samples) in the week 19–25, in line with the increase in cases of infection with the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in which the variant was detected increased fromone in the first week, to 11 in the second, and to 17 in the last one. The presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples, and by Sanger sequencing in 66% (64/97) of PCR amplicons

    The rapid spread of SARS-COV-2 Omicron variant in Italy reflected early through wastewater surveillance

    Get PDF
    The SARS-CoV-2 Omicron variant emerged in South Africa in November 2021, and has later been identified worldwide, raising serious concerns. A real-time RT-PCR assay was designed for the rapid screening of the Omicron variant, targeting characteristic mutations of the spike gene. The assay was used to test 737 sewage samples collected throughout Italy (19/21 Regions) between 11 November and 25 December 2021, with the aim of assessing the spread of the Omicron variant in the country. Positive samples were also tested with a real-time RT-PCR developed by the European Commission, Joint Research Centre (JRC), and through nested RT-PCR followed by Sanger sequencing. Overall, 115 samples tested positive for Omicron SARS-CoV-2 variant. The first occurrence was detected on 7 December, in Veneto, North Italy. Later on, the variant spread extremely fast in three weeks, with prevalence of positive wastewater samples rising from 1.0% (1/104 samples) in the week 5-11 December, to 17.5% (25/143 samples) in the week 12-18, to 65.9% (89/135 samples) in the week 19-25, in line with the increase in cases of infection with the Omicron variant observed during December in Italy. Similarly, the number of Regions/Autonomous Provinces in which the variant was detected increased from one in the first week, to 11 in the second, and to 17 in the last one. The presence of the Omicron variant was confirmed by the JRC real-time RT-PCR in 79.1% (91/115) of the positive samples, and by Sanger sequencing in 66% (64/97) of PCR amplicons. In conclusion, we designed an RT-qPCR assay capable to detect the Omicron variant, which can be successfully used for the purpose of wastewater-based epidemiology. We also described the history of the introduction and diffusion of the Omicron variant in the Italian population and territory, confirming the effectiveness of sewage monitoring as a powerful surveillance tool
    corecore